

1372

🕴 31 мая 2011

А.С. Шишкин И.С. Шишкин С.А.Шишкин

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

Задача безопасного слива криогенной составляющей возникает всегда, когда возникают проекты использования сжиженных газов. При этом приходится рассматривать два отдельных вопроса теплопередача и прочность, точнее температурная прочность конструкций.

Существуют исследования по вопросам термоупругости и динамической термоупругости обзор по этим вопросам можно найти в работе [7]. При этом для получения решений возникающих и обсуждаемых задач используют методы преобразований Лапласа, Фурье а также конечноэлементные методы Никелл и Сэкмен [8]. В настоящей работе рассматривается задача о прочности трубопровода при аварийном сливе жидкого азота. Трубопровод представляет из себя конструкцию состоящую из двух цилиндрических труб сочлененных торообразной вставкой Один из краев трубопровода жестко закреплен. Трубопровод подвешен так, что не возникает напряжений под собственным весом.

Целью работы является выяснение и поиск сосредоточенных областей повышенного напряжения возникающих при больших (порядка 300°) перепадах температур. В отличии от [7], где для решения задач термоупругости предлагается использовать процесс Бубнова – Галеркина и [8] в настоящей работе для решения таких задач используется сеточный метод, а в качестве алгоритма получения решения используется метод Г.Шульца [5]. Проводятся оценки накопления погрешности, чего в [7], [8] вообще нет.

1. Расчет температурного поля.

1.1. Постановка задачи.

Рассматривается процесс распространения температуры в тонкостенной цилиндрической трубе (рис1.)., при протекании по ней жидкого охладителя при неполном заполнении трубы. Труба подвешена, так что массовые силы можно не учитывать. В качестве охладителя рассматривается жидкий азот (N2) при температуре 60К. Рассматривается динамическое, стартовое течение азота.

При этом считается, что начальное температурное поле трубы имеет однородную температуру 300К.

Коэффициенты теплопроводности К и теплоемкости материала трубы считаются не зависящими от температуры.

На начальном этапе решения задачи мы пренебрегаем влиянием газовой составляющей, однако намерены учесть его в дальнейшем.

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

Допущения: Труба считается тонкостенным полым цилиндром радиуса R.

 $L_1 = L_2 = 5M$. Возможные углы поворота трубы φ=30,45,75. Диаметр трубы равен радиусу кривизны тора. R=0.3м. Жидкость течет от места заделки к свободному концу, заполняя трубу на половину. Возможные скорости течения v=3 м/сек, 5 м/сек. Возможные объемы сброса азота: 10 м3, 50 м3.

1.2. Метод решения.

Ввиду линейных размеров трубопровода будем считать его тонкостенным. Рассмотрим случай распространения тепла по тонкостенной трубе. Уравнение теплопроводности имеет вид:

(1)
$$\partial T / \partial t = (\alpha / \rho / Cv) \Delta T + f.$$

где

(2)
$$\Delta = (\partial^2 / \partial^2 x + \partial^2 / \partial^2 y + \partial^2 / \partial^2 z)$$
 - оператор Лапласа в декартовых координатах.

обозначим $k = (\alpha / \rho / Cv)$.тогда уравнение (1) можно записать в виде

 $(\partial / \partial t) T = \kappa \Delta T + f(x_i, t).$ (3)

Потоки тепла от охладителя опишем функцией f(x_i, t). Она может быть записана в виде

(4)
$$f(x_i, t) = B^* \theta(x_i, t)^*(T-T_0),$$

 $\theta(x_i, t) - \phi$ ункция единичного скачка,

злесь

 $(T-T_0)$ - перепад температуры, **В** – интенсивность потока. (5)

 $\theta(x_i, t)|_x = 0$ при отсутствии криогенной составляющей в точке x_i

 $\theta(x_i, t) \mid_x = 1$ при присутствии криогенной составляющей в точке x_i .

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

Поскольку трубопровод имеет сложную геометрию будем решать задачу в криволинейных координатах, при этом на цилиндрических участках трубы наши координаты совпадают с цилиндрическими координатами, а на тороидальной с тороидальными координатами. Очевидно, выбранные координатные кривые непрерывны и непрерывно дифференцируемы. В области сопряжения цилиндрических и тороидальной частей трубы выделим малую область, в которой будет выполняться непрерывный, гладкий переход, сопрягающий вторые производные координатных кривых. При выборе шага дискретизации учтем эту особенность.

Оператор Лапласа в ортогональных координатах [2] имеет вид.

$$\begin{array}{ll} (6) \\ \Delta U = & 1/\left(g_{11}*g_{22}*g_{33}\right)^{1/2} \left\{ \partial /\partial q_1 \left[\left((g_{22}*g_{33})/g_{11} \right)^{\frac{1}{2}} \partial U/\partial q_1 \right] + \\ & + \partial /\partial q_2 \left[\left((g_{11}*g_{33})/g_{22} \right)^{\frac{1}{2}} \partial U/\partial q_2 \right] \\ & + \partial /\partial q_3 \left[\left((g_{11}*g_{22})/g_{33} \right)^{\frac{1}{2}} \partial U/\partial q_3 \right] \right\} \end{array}$$

Считая T не зависящим от r отбросим слагаемое $(1/r) \partial / \partial r [r \partial T / \partial r]$, тогда уравнение теплопроводности для цилиндрического участка тонкостенной трубы будет иметь вид:

$$(\partial /\partial t) T = \kappa (\partial^2 /\partial z^2 + 1/r^2 \partial^2 /\partial \psi^2) T + f(z, \psi, t)$$

Для торического участка трубы аналогично будем иметь:

(8)

$$(\partial /\partial t) T = \kappa [1/(\rho (R + \rho Cps \psi))]^* \{ \partial /\partial \phi [\rho/(R + \rho Cps \psi) \partial T /\partial \phi] + \partial /\partial \psi [(R + \rho Cps \psi)/\rho \partial T /\partial \psi] \} + f(t, \phi, \psi).$$

Использовать сеточную аппроксимацию уравнения теплопроводности. Построим сеточное уравнение полагая, что

(9)
$$t = i^{*}h_{t}$$
,
 $z = j^{*}h_{z}$, $\varphi = j^{*}h_{\varphi}$,
 $\psi = k^{*}h_{\psi}$,
 $f(t, z, \varphi)_{ijk} = f(i^{*}h_{t}, j^{*}h_{z}, k^{*}h_{\varphi}) = f_{i,j,k}$

Производные представим в виде

(10)
$$\partial^2 T_{ijk} / \partial z^2 = (T_{i,j+1,k} - 2 T_{i,j,k} + T_{i,j-1,k}) / h_z^2,$$

 $\partial^2 T_{ijk} / \partial \psi^2 = (T_{i,j,k+1} - 2 T_{i,j,k} + T_{i,j,k-1}) / h_{\psi}^2,$
 $\partial^2 T_{ijk} / \partial \phi^2 = (T_{i,j+1,k} - 2 T_{i,j,k} + T_{i,j-1,k}) / h_{\phi}^2,$
 $(\partial / \partial t) T_{ijk} = (T_{i+1,j,k} - T_{i,j,k}) / h_t.$

Таким образом для вычисления $T_{i,\ j,k}$ в узлах сетки для цилиндрического участка получаем равенство

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

(11)

$$(T_{i+1,j,k} - T_{i,j,k})/h_t = = \kappa (T_{i,j+1,k} - 2 T_{i,j,k} + T_{i,j-1,k})/h_z^2 + 1/r^2 (T_{i,j,k+1} - 2 T_{i,j,k} + T_{i,j,k-1})/h_{\phi}^2 + f_{i,j,k},$$

Вычисление следующего шага через предыдущий можно проводить по схеме: (12)

$$\Gamma_{i+1,j,k} = T_{i,j,k} + h_t f_{i,j,k} +$$

+
$$h_t * \kappa \{ (T_{i,j+1,k} - 2 T_{i,j,k} + T_{i,j-1,k}) / h_z^2 + 1/r^2 (T_{i,j,k+1} - 2 T_{i,j,k} + T_{i,j,k-1}) / h_{\psi}^2 \}.$$

Перейдем к рассмотрению торического участка трубы.

Запишем оператор Лапласа в тороидальных координатах (см. также (8)) $T = T(t, \phi, \psi)$, (13)

$$\Delta U = \left[\frac{1}{\rho (R + \rho Cps \psi)} \right]^{*} \left\{ \frac{\partial}{\partial \phi} \left[\frac{\rho}{R + \rho Cps \psi} \right] \frac{\partial U}{\partial \phi} \right] + \frac{\partial}{\partial \psi} \left[\frac{(R + \rho Cps \psi)}{\rho (R + \rho Cps \psi)} - \frac{\partial U}{\partial \psi} \right] + \frac{\partial}{\partial \rho} \left[\frac{\rho (R + \rho Cps \psi)}{\rho (Q + \rho Cps \psi)} - \frac{\partial U}{\partial \rho} \right] \right\}$$

Переходя к сеточным координатам в координатах (ϕ_p , ψ_q) при

R= const; ρ =const получаем (14)

$$\begin{array}{ll} \Delta U \big|_{pq} = & \left\{ \left[\begin{array}{c} (A/h_{\phi}^{2}) & *(U_{p-1\,q} + U_{p+1\,q}) \\ & - (B/h_{\psi}^{2}) & *(U_{p\,q-1} + U_{p\,q+1}) \\ & + (C/(2\,h_{\psi}))^{*}(U_{p\,q+1} - U_{p\,q-1}) \right] - (D/h_{\psi}^{2}) U_{pq} \right\}; \end{array}$$

где обозначено

$$\begin{array}{ll} A = 1/(R + \rho \ Cps \ \psi \); & U_{pq} = U(\phi_p, \ \psi_q); \\ B = 1/ \ \rho^2; & \\ C = Sin \ \psi \ / \ [\rho \ (R + \rho \ Cps \ \psi \)], & D = 2 \ (A \ (h_\psi \ / \ h_\phi \)^2 \ + B \) \ . \end{array}$$

 $C = Sin \psi / [\rho (R + \rho Cps \psi)], D = 2 (A (n_{\psi} / n_{\phi})^{-} + B).$ С учетом выражения (14) для сеточной апроксимации уравнения теплопроводности в тороидальных координатах получаем

$$(T_{i+1,p,q} - T_{i,p,q})/h_{t} = \kappa \{ [(A/h_{\phi}^{2}) * (T_{ip-1q} + T_{ip+1q}) - (B/h_{\psi}^{2}) * (T_{ipq-1} + T_{ipq+1}) + (C/(2h_{\psi}))*(T_{ipq+1} - T_{ipq-1})] - (D/h_{\psi}^{2})T_{ipq} \} + f_{i,j,k};$$

$$A = 1/(R + \rho Cps \psi); \qquad T_{ipq} = T(t_{i}, \phi_{p}, \psi_{q});$$

$$B = 1/\rho^{2}; \qquad C = Sin \psi / [\rho (R + \rho Cps \psi)], \qquad D = 2 (A (h_{\psi} / h_{\phi})^{2} + B).$$

При q = N для значения q + 1 выбирается q = 1, а при q = 1 для значения q - 1 выбирается q = N.

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

1.3. Полученные результаты.

Ниже на рис.1,2,3 приведены результаты расчета поля температур при сливе 10м³ жидкого азота(N2), со скоростью течения по трубе 5м/сек, для углов поворота трубы 30, 45, 75 градусов. При этом слив азота занимает 56 секунд. На рисунках приведено поле температур для 56-й секунды. Интенсивность красного цвета на рисунках показывает температуру в точках, интенсивности 255 соответствует температура 300К.

Рис.2

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

2. Расчет поля напряжений.

Расчет поля напряжений проводится в два этапа. На первом шаге проводится расчет распределения поля температур, а на последующих шагах эти результаты используются для проведения расчета поля напряжений. Формирование уравнений, для проведения расчетов меняющегося по времени температурного поля описано в разделе 1.

Для расчета $\sigma = \sigma_{ii}$ будем использовать систему уравнений Бильтрами-Митчела. При этом нам понадобится представление оператора Лапласа в различных системах ортогональных координат. Поэтому, в настоящем разделе будет подробно описан оператор Лапласа Δ в цилиндрической, торической и сферической системах координат. Это делается здесь для полноты изложения.

2.1. Уравнение теплопроводности.

(11)

)
$$\partial T / \partial t = (\alpha / \rho / Cv) \Delta T + f$$

где

$$\Delta = (\partial^2 / \partial^2 x + \partial^2 / \partial^2 y + \partial^2 / \partial^2 z) - \text{ оператор Лапласа в }$$
декартовых координатах.

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

2.2. Оператор Лапласа в ортогональных координатах. Известно [2], что оператор Лапласа в ортогональных координатах имеет вид

$$\begin{array}{l} (12) \\ \Delta U = 1/(g_{11}*g_{22}*g_{33})^{1/2} \left\{ \partial /\partial q_1 [((g_{22}*g_{33})/g_{11})^{\frac{1}{2}} \partial U/\partial q_1] + \\ &+ \partial /\partial q_1 [((g_{11}*g_{33})/g_{22})^{\frac{1}{2}} \partial U/\partial q_2] \\ &+ \partial /\partial q_1 [((g_{11}*g_{22})/g_{33})^{\frac{1}{2}} \partial U/\partial q_3] \right\} \end{array}$$

Здесь g_{ij} - элементы метрического тензора в ортогональных координатах q_i . Действие оператора Лапласа рассматривается на отвлеченном скалярном поле U, при проведении расчетов поле U будет заменено на конкретные физические поля.

2.3. Цилиндрические координаты [р, ψ, z]

(13) x1 = ρ Cos ψ , x2 = ρ Sin ψ , x3 = z. Метрический тензор для цилиндрических координат.

 $g_{ij} =$

1	0	0
0	r ²	0
0	0	1

$$(14) \Delta U = (1/r) \partial / \partial r [r \partial U / \partial r] + (1/r^{2}) \partial^{2} U / \partial \psi^{2} + \partial^{2} U / \partial z^{2}$$

Дискретизация при r = const дает

$$\Delta U_{jk} = (U_{j+1 k} - 2 U_{j k} + U_{j-1 k}) / h_z^2 + 1/r^2 (U_{j k+1} - 2 U_{j k} + U_{j k-1}) / h_{\psi}^2.$$

2.4. Тороидальные координаты [φ, ψ, ρ]

(15)
$$x1 = (R + \rho \cos \psi) \cos \phi, \quad x2 = \rho \sin \psi, \quad x3 = (R + \rho \cos \psi) \sin \phi$$

Метрический тензор для тороидальных координат имеет вид.

 $g_{ij} =$

$(R + \rho \cos \psi)^2$	0	0
0	ρ^2	0
0	0	1

(16)

$$\Delta U = \frac{1}{(g_{11}*g_{22}*g_{33})^{1/2}} \left\{ \frac{\partial}{\partial q_1} \left[\left((g_{22}*g_{33})/g_{11} \right)^{\frac{1}{2}} \frac{\partial}{\partial q_1} \right] + \frac{\partial}{\partial q_2} \left[\left((g_{11}*g_{33})/g_{22} \right)^{\frac{1}{2}} \frac{\partial}{\partial U} \frac{\partial}{\partial q_2} \right] + \frac{\partial}{\partial q_3} \left[\left((g_{11}*g_{22})/g_{33} \right)^{\frac{1}{2}} \frac{\partial}{\partial U} \frac{\partial}{\partial q_3} \right] \right\}$$

$$\begin{split} \Delta U &= \left[1/\left(\rho \left(R + \rho \, Cps \, \psi \right) \right) \right]^* \left\{ \left. \frac{\partial}{\partial \phi} \left[\left. \rho \right/ \left(R + \rho \, Cps \, \psi \right) \right. \left(\frac{\partial U}{\partial \phi} \right] \right. + \\ &+ \left. \frac{\partial}{\partial \phi} \left[\left(R + \rho \, Cps \, \psi \right) \right) \rho \left. \frac{\partial U}{\partial \phi} \right] \right. + \\ &+ \left. \frac{\partial}{\partial \rho} \left[\left. \rho \left(R + \rho \, Cps \, \psi \right) \right. \left(\frac{\partial U}{\partial \rho} \right] \right. \right\} \end{split}$$

Переходя к сеточным координатам (ϕ_p , ψ_q) при R= const; ρ =const получаем

$$\begin{array}{l} (17) \\ -(h_{\psi}^{2}/D) \Delta U|_{pq} = U_{pq} - (A/D) (h_{\psi}/h_{\phi})^{2} * (U_{p-1q} + U_{p+1q}) \\ & - (B/D) * (U_{pq-1} + U_{pq+1}) \\ & + (C/(2D)) h_{\psi}(U_{pq+1} - U_{pq-1}); \\ A = 1/(R + \rho Cps \psi); \qquad U_{pq} = U(\varphi_{p}, \psi_{q}); \\ B = 1/\rho^{2}; \\ C = Sin \psi / [\rho (R + \rho Cps \psi)]; \qquad D = 2 (A (h_{\psi}/h_{\phi})^{2} + B). \end{array}$$

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

Для уравнения $\Delta U = f$ соответственно будем иметь (18) -(h_{ψ}^2/D) f | pq = U pq - (A/D) (h_{ψ}/h_{ϕ})² * (U p-1 q + U p+1 q) - (B/D) * (U pq-1 + U pq+1) + (C/(2D)) h_{ψ} (U pq+1 - U pq-1);

2.5. Сферические координаты

[r, φ, ψ]

Сферические координаты

(19) x1 = r Cos ϕ Cos ψ , x2 = r Sin ϕ Cos ψ , x3 = r Sin ϕ Sin ψ . Метрический тензор для сферических координат имеет вид.

 $g_{ij} =$

1	0	0
0	r^2	0
0	0	$(r \operatorname{Sin} \varphi)^2$

 $\Delta U = 1/(r^2 \sin \phi) \left\{ \partial / \partial r \left[r^2 \sin \phi \partial / \partial r U \right] + \right.$

+ $\partial / \partial \phi [Sin \phi \partial / \partial \phi U]$ + $\partial / \partial \psi [(1/Sin \phi) \partial / \partial \psi U]$

 $\Delta U = \partial^2 U / \partial r^2 + (2/r) \partial U / \partial r +$

+
$$(1/(r^2 \sin \phi)) \partial / \partial \phi [\sin \phi \partial U / \partial \phi]$$

+ $(1/(r^2 \sin^2 \phi)) [\partial^2 U / \partial \psi^2]$

При
$$\partial U / \partial \mathbf{r} = \mathbf{0}$$
 будем иметь
(20)
 $\Delta U = (1/(\mathbf{r}^2 Sin \phi)) \partial / \partial \phi [Sin \phi \partial U / \partial \phi] + (1/(\mathbf{r}^2 Sin^2 \phi)) [\partial^2 U / \partial \psi^2]$
или
 $\Delta U = 1/(\mathbf{r}^2) [\partial^2 U / \partial \phi^2] + (Cos \phi / (\mathbf{r}^2 Sin \phi)) [\partial U / \partial \phi] + (1/(\mathbf{r}^2 Sin^2 \phi)) [\partial^2 U / \partial \psi^2]$

Дискретизация дает

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

3. Вычисление тензора напряжений.

3.1. Уравнение Бельтрами – Митчела. Дискретизация.

Уравнение Бельтрамми- Митчела в отсутствии массовых сил имеет вид [1]: (24)

$$\Delta \sigma_{ij} + 1/(1+\mu) \mathbf{\nabla}_i \mathbf{\nabla}_j \sigma + \alpha E/(1+\mu) \mathbf{\nabla}_i \mathbf{\nabla}_j T + \alpha E/(1-\mu) \Delta T g_{ij} = 0.$$

Здесь ∇_i - оператор градиента.

Вычисляя след в уравнении (24) получаем

(25)
$$[(2 + \mu)/(1 + \mu)] \Delta \sigma + [\alpha E/(1 + \mu) + 3\alpha E/(1 - \mu)] \Delta T = 0.$$

Из полученного уравнения следует, что

(26)

$$\sigma = \sigma_0 - \left[\alpha E/(1+\mu) + 3\alpha E/(1-\mu) \right] / \left[(2+\mu)/(1+\mu) \right] (T-T_0) ,$$

где σ_0 удовлетворяет уравнению $\Delta \sigma = 0$.

Таким образом для вычисления σ сначала проводится расчет температурного поля, а затем решается граничная задача для уравнения Лапласа $\Delta \sigma = 0$.

Для вычисления тензора напряжений σ іј воспользуемся системой уравнений Бельтрами – Митчела(24). В случае постоянства распределения температуры. будем иметь

(27)
$$(1+\gamma) \Delta \sigma ij + (\partial^2 \sigma / \partial x i \partial x j) = 0;$$

Отсюда следует $\Delta \sigma = 0$; $\Delta \Delta \sigma i j = 0$. О граничных условиях можно сказать следующее.

В нашем случае при заделке трубы, на границе заделки деформации ϵ_{ij} полагаем равными нулю, тогда граничное значение для σ будет определяться только температурными напряжениями то есть будет пропорционально $T-T_0$, точнее на границе в области заделки будем иметь

$$\sigma|_{\Gamma} = \left[\alpha E/(1+\mu) + 3\alpha E/(1-\mu) \right] / \left[(2+\mu)/(1+\mu) \right] (T-T_0).$$

3.2. О методе решения.

На плоскости (xy) рассмотрим задачу Δ U = f, U| Γ = U_(граничное). Выполним дискретизацию для Δ U, имеем

$$(d^2 u / d^2 x)_p = (U_{p-1} - 2 U_p + U_{p+1}) / h^2;$$

Положим
$$h_x = h_y = h$$
, тогда
 $\Delta Upq = (U_{p-1q} - 2U_{pq} + U_{p+1q}) / h^2 + (U_{pq-1} - 2U_{pq} + U_{pq+1}) / h^2 =$
 $= \{U_{p-1q} + U_{p+1q} + U_{pq-1} + U_{pq+1} - 4U_{pq}\} / h^2 =$
 $= \{(1/4)^* (U_{p-1q} + U_{p+1q} + U_{pq-1} + U_{pq+1}) - U_{pq}\} * 4 / h^2 =$
 $= \{U_{pq} - (1/4)^* (U_{p-1q} + U_{p+1q} + U_{pq-1} + U_{pq+1})\} * (-4/h^2)$

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

Таким образом получаем

(29)

{
$$U_{pq} - (1/4)^* (U_{p-1q} + U_{p+1q} + U_{pq-1} + U_{pq+1})$$
}=(-h² f_{pq} + U_{\(\Gamma\) pq})/4.

Используя объект I $_{ijpq} = \{ 1 \text{ если }_{ij=pq} ; 0 \text{ если }_{ij\neq pq} \}$ запишем уравнение Лапласа в виде

(30) ($I_{ijpq} - E_{ijpq}$) Upq = ($-h^2 f_{ij} + Ur ij$)/4

В случае если $|| E ||_2 < 1$, решение можно записать в виде

(31)

$$Uij = (-h^2 f_{ij} + Ur ij)/4 +$$

$$+ \{ E_{ijpq} + E^{2}_{ijpq} +$$

+ E^{3}_{ijpq} + E^{4}_{ijpq} + ... + E^{k}_{ijpq} + ...) (- $h^{2} f_{pq}$ + Ur pq)/4; Именно эта схема решения и использовалась для решения уравнения (25) применительно к трубопроводу схематично "цилиндр – тор – цилиндр ". При этом использовались ортогональные системы координат цилиндрическая п.2.3 и торическая. п.2.4.

В [3] проведен анализ накопления погрешности ускоренной схемы получения решения для алгебраических задач такого типа проведены оценки точности решения для обратной матрицы представленной в виде (I + E)⁻¹. Оценка точности метода Шульца [5] (метод простой итерации) уступают полученному в [3] результату.

Ниже в разделе 3.3, в таблицах 1,2 приведены результаты накопления погрешности для решения вычисляемого по формуле (31) иллюстрирующие насколько плох в действительности оператор (I_{ijpq} - E_{ijpq}) сформированный для задачи с цилиндрическими и торическими координатами.

3.3. О точности метода решения

В [6], [4] доказывалась сходимость представления обратной матрицы в виде ряда, в [3] приведена явная формула и проведены оценки накопления вычислительных погрешностях для ускоренной сходимости метода Г. Шульца [5], в настоящей работе проводились оценки точности и анализ накопления погрешности для алгоритма Шульца.

Как известно см. [3], [4], [5], [6] обратная матрица для матрицы (I-E) при $||E||_2 < 1$ может быть вычислена в виде

Используя оценку точности умножения двух матриц см. например [3], [4]

(33) $\|$ AB - (AB) вычисл. $\|_2 \le 2^{-p} C_2(n) \|A\|_2 * \|B\|_2$

можно получить, важную оценку

(34)

 $\parallel \ E^k \ \ \text{-} \ \ (E^k)_{\text{ buyucn.}} \ \ \parallel 2 \ \ \leq \ 2^{\text{-p}} \left(\ \ k \ \text{-} \ 1 \ \right) C_2 \left(n \right) \left(\ \parallel E \parallel_2 \ \right)^k.$

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

Опуская промежуточные выкладки получаем следующую оценку точности накопления погрешности вычисления обратной матрицы для алгоритма Г. Шульца.

(35)
$$\| (\mathbf{I} - \mathbf{E})^{-1} - (\mathbf{I} - \mathbf{E})^{-1} \|_{\mathbf{B} \in \mathbf{H} \times \mathbf{L}} \|_{2} \leq 2^{-p} C_{2} (n) \{ [1 - (N+1)(||\mathbf{E}||_{2})^{N}] / (1 - ||\mathbf{E}||_{2}) + ||\mathbf{E}||_{2} [1 - (||\mathbf{E}||_{2})^{N}] / (1 - ||\mathbf{E}||_{2}) \}$$

При этом неучтенный остаток ряда составляет ($||E||_2^{N+1}$) / (1 – $||E||_2$) и при достаточных значениях N на порядки отличается от полученного значения. накопления погрешности.

Здесь N - число выполненных итераций. $C_2(n) = n^2$ для вычислений с простой точностью $C_2(L, n) = L*n$ для вычислений с разреженными матрицами имеющими не более L - элементов в каждой строке.

В виду важности результата сформулируем его как теорему

Теорема 1.

Для п*п матрицы I - Е такой, что $|| E ||_2 < 1$ обратная матрица (I - Е)⁻¹ вычисленная по методу Г.Шульца как

$$(I - E)^{-1} = I + E + E^{2} + E^{3} + \dots + E^{k} \dots + E^{N}$$

в арифметике простой точности вычисляется с погрешностью удовлетворяющей оценке

$$\| (\mathbf{I} - \mathbf{E})^{-1} - (\mathbf{I} - \mathbf{E})^{-1}_{\mathbf{B} \mathbf{b} \mathbf{f} \mathbf{H} \mathbf{C} \mathbf{I}} \|_{2} \le$$

$$\le 2^{-p} C_{2} (n) \{ [1 - (N+1)(||\mathbf{E}||_{2})^{N}] / (1 - ||\mathbf{E}||_{2}) + ||\mathbf{E}||_{2} [1 - (||\mathbf{E}||_{2})^{N}] / (1 - ||\mathbf{E}||_{2})^{2} \} +$$

$$+ (||\mathbf{E}||_{2}^{N+1}) / (1 - ||\mathbf{E}||_{2}) .$$

Здесь N - число выполненных итераций.

 $C_2(n) = n^2$ для вычислений с простой точностью $C_2(L, n) = L^*n$ для вычислений с разрехенными матрицами имеющими не более L - элементов в каждой строке.

Накопление погрешности вычислений для плотно заполненной матрицы Е при $C_2(n) = n^2$.

Таблица 1.

	$2^{-p} \approx 10^{-16}$	$\mathbf{R} = \ (\mathbf{I} + \mathbf{E})^{-1} - (\mathbf{I} + \mathbf{E})^{-1}_{\mathbf{B} \in \mathbf{H} \setminus \mathbf{U} \in \mathbf{J}} \ _2$
4000 уравнений	$ E _2 = 0,9984$	2 ^{-p} * 43 290 043
6000 уравнений	$ E _2 = 0,9996$	2 ^{-p} * 259 740 259
10000 уравнений	E 2 = 0,99967	2 ^{-p*} 787 091 696
15000 уравнений	E 2 = 0,9998	2 ^{-p} * 865 800 865
20000 уравнений	E 2 = 0,99983	2 ^{-p} * 4 074 357 015
30000 уравнений	E 2 = 0,999915	2 ^{- p} * 10 389 610 389
45000 уравнений	E 2 = 0,99995	2 ^{-p} * 15 584 415 584

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

Таблица 2.

|| E ||2

Накопление погрешности вычислений для разреженной матрицы Е при

0,1	2 ^{-p} 132631,57894
0,15	2 ^{-p} 146666,666666
0,2	2 ^{-p} 162352,94117
0,25	2 ^{-p} 180000
0,3	2 ^{-p} 200000
0,35	2 ^{-p} 222857,142857
0,4	2 ^{-p} 249230,769230
0,45	2 ^{-p} 280000
0,5	2 ^{-p} 316363,63636
0,55	2 ^{-p} 360000
0,6	2 ^{-p} 413333,33333
0,65	2 ^{-p} 480000
0,7	2 ^{-p} 565714,28571
0,75	2 ^{-p} 680000
0,8	2 ^{-p} 840000
0,9	2 ^{-p} 1480000
0,95	2 ^{-p} 2280000
0,99	2 ^{-p} 23880000
0,999	2 ^{-p} 185661148,6

Результаты расчетов

Ниже приведены результаты расчета поля напряжений для случаев слива жидкого азота в объемах 10 и 50 м³ по трубе диаметром 0.3м со скоростями 5 и 3 м/сек при условии половинного заполнения трубы.

1. Слив 10 м³ со скоростью течения 5 м/сек что занимает 56 секунд. Параметры разбиения сетки:

число точек по длине первого цилиндрического участка трубопровода N1 =100, число точек по углу ϕ тороидального участка трубопровода N ϕ = 100, число точек по длине второго цилиндрического участка трубопровода N2 = 100, число точек по окружности N ψ =50.

	1 , ;	
64,4013822722504	60,000000000356	296,251930678048
60,7083867851906	60,000000002147	297,289313956251
60,1140136430925	60,000000013306	298,041301244227
60,0183505149161	60,00000008269	298,567153591413
60,0029535531946	60,000000513664	298,911724746695
60,0004753861224	60,0000003191111	299,106297811382
60,0000765162035	60,0000019825066	299,169316622067
60,0000123158841	60,0000123166602	299,106878344515
60,0000019823626	60,000076520297	298,912906051858
60,0000003190848	60,0004754070722	298,568974062835
60,000000513617	60,0029536557776	298,043813285414
60,000000082682	60,0183509825923	297,292577840603
60,000000013305	60,114015504813	296,25600658173
60,000000002147	60,7083919283333	294,859661578828
60,000000000356	64,4013746963626	293,013466664742
60,000000000068	87,3468986112793	290,611797784367
60,000000000022	109,899223332675	287,534387119685
60,000000000014	131,745869783203	283,648288440225
60,000000000013	152,6042883791	278,811106346319
60,000000000013	172,232713706514	272,875613748663
60,000000000013	190,438217511283	265,695770409978
60,000000000013	207,081542343883	257,134015784973
60,000000000013	222,078593907287	247,069552205578
60,000000000013	235,398757781775	235,407175236149
60,000000000013	247,060454341851	222,086066181517
60,000000000013	257,124530403943	207,087858303458
60,000000000013	265,68619361985	190,443242953415
60,000000000013	272,866222982158	172,236409522025
60,000000000013	278,802143222709	152,60672098398
60,000000000013	283,639947345527	131,747211941085
60,000000000013	287,526809703841	109,89974453862
60,000000000014	290,605072919055	87,3469454551692
60,000000000022	293,007634926951	
60,000000000068	294,854723050696	

Результаты расчета температурного поля в области заделки:

Далее приведена диаграмма распределения температуры по кольцевому срезу

Результаты расчета следа тензора напряжений оіі, для углов изменения направления потока соответственно ф=30, 45, 75.

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

Диаграмма напряжений

= 0,0968695516177124	= 2,71234744529595	= 2,3248692388251	
= 0,193739103235425	= 2,80921699691366	= 2,42173879044281	
= 0,290608654853137	= 2,90608654853137	= 2,51860834206052	
= 0,38747820647085	= 3,00295610014909	= 2,61547789367824	
= 0,484347758088562	= 3,0998256517668	= 2,71234744529595	
= 0,581217309706275	= 3,19669520338451	= 2,80921699691366	
= 0,678086861323987	= 3,29356475500222	= 2,90608654853137	
= 0,7749564129417	= 3,39043430661994	= 3,00295610014909	
= 0,871825964559412	= 3,48730385823765	= 3,0998256517668	
= 0,968695516177124	= 3,58417340985536	= 3,19669520338451	
= 1,06556506779484	= 3,68104296147307	= 3,29356475500222	
= 1,16243461941255	= 3,77791251309079	= 3,39043430661994	
= 1,25930417103026	= 3,8747820647085		
= 1,35617372264797	= 3,97165161632621		
= 1,45304327426569	= 4,06852116794392		
= 1,5499128258834	= 4,16539071956164		
= 1,64678237750111	= 4,26226027117935		
= 1,74365192911882	= 4,35912982279706		
= 1,84052148073654	= 4,45599937441477		
= 1,93739103235425	= 4,55286892603249		
= 2,03426058397196	= 4,6497384776502		
= 2,13113013558967	= 4,74660802926791		
= 2,22799968720739	= 4,84347758088562		$*10^{7}$ · · · · · · · · · · · · · · · · · · ·
			"IV H/M

2. Слив 50 м³ со скоростью течения 5 м/сек что занимает 280 секунд. Параметры разбиения сетки:

число точек по длине первого цилиндрического участка трубопровода N1 = 100, число точек по углу ϕ тороидального участка трубопровода N ϕ = 100, число точек по длине второго цилиндрического участка трубопровода N2 = 100, число точек по окружности N ψ =50.

Результаты расчета температурного поля в области заделки:

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

61,8910712349549	60,000000000013	60,0488147890545	216,231562218433	137,632999677895
60,30382488239	60,000000000013	60,3038329706557	218,800954345746	128,826075281706
60,0488133770602	60,000000000013	61,8911172214255	220,807454351355	119,761281529833
60,0078424983709	60,000000000013	71,7706938926838	222,244989706763	110,471912175842
60,0012599986698	60,000000000013	81,605626143645	223,10923448149	100,992381625745
60,0002024350938	60,000000000013	91,3586983906544	223,397597698337	91,3580685671997
60,0000325238229	60,000000000013	100,993123555379	223,109215986907	81,6051470710062
60,0000052253749	60,000000000013	110,472730817287	222,24495109926	71,7704071179796
60,000000839525	60,000000000014	119,762145023668	220,807392477003	
60,0000001348804	60,000000000017	128,826955517887	218,800864678022	
60,00000021671	60,000000000036	137,633872434405	216,231439096551	
60,000000034825	60,000000000157	146,150868847283	213,106949055146	
60,000000005602	60,0000000000911	154,347307536875	209,437007023622	
60,000000000091	60,000000005603	162,194051545117	205,233022439303	
60,000000000157	60,000000034827	169,663558110508	200,508218374834	
60,000000000036	60,00000021672	176,729955996266	195,27764513243	
60,000000000017	60,0000001348865	183,369106636023	189,558188742935	
60,000000000014	60,000000839561	189,558649907952	183,36857231842	
60,000000000013	60,0000052255864	195,278035698427	176,729348249937	
60,000000000013	60,000032525064	200,50854271944	169,662879356803	
60,000000000013	60,0002024423507	205,233286290863	162,193307277415	
60,000000000013	60,0012600409297	209,437216981806	154,346506638758	
60,000000000013	60,007842743311	213,107112119739	146,150023845242	
60,000000000013	60,00/842/43311	213,10/112119/39	146,150023845242	

Далее приведена диаграмма распределения температуры по кольцевому срезу

.

Результаты расчета следа тензора напряжений σ_{ii} для углов изменения направления потока соответственно ϕ =30, 45,

20

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

3. Слив 10 м³ со скоростью течения 3 м/сек что занимает 94 секунд. Параметры разбиения сетки: число точек по длине первого цилиндрического участка трубопровода N1 =100, число точек по углу ϕ тороидального участка трубопровода N ϕ =100, число точек по длине второго цилиндрического участка трубопровода N2 =100, число точек по окружности N ψ =50.

 $100\frac{1}{2}$

А.С. Шишкин И.С. Шишкин С.А.Шишкин Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

i es jubiarbi pae iera re	mileput photo nom b oc	ласти заделки.	
63,3957168771983	60,000000000013	217,282802516749	246,832575305685
60,5459991308687	60,000000000013	228,127147891713	237,976932261232
60,0877918459632	60,000000000014	237,970273750859	228,13333139206
60,0141162119914	60,00000000002	246,825581117605	217,288389714868
60,0022697808863	60,000000000055	254,720401557757	205,444742449943
60,0003649652199	60,000000000274	261,693610246931	192,622704068511
60,0000586841498	60,000000001639	267,793048623092	178,861404902789
60,0000094360875	60,000000010141	273,072867024362	164,219315493882
60,0000015172772	60,000000063088	277,590887327268	148,774094745122
60,000002439721	60,000000392324	281,406071282079	132,621727924152
60,000000392303	60,000002439839	284,57616363696	115,874954942481
60,000000063084	60,0000015173419	287,155561885494	98,6610259794355
60,00000001014	60,0000094364375	289,193448042445	81,1188579331101
60,000000001639	60,0000586860024	290,732203461645	
60,000000000274	60,0003649747367	291,806116219323	
60,000000000055	60,0022698276777	292,440382462742	
60,00000000002	60,0141164263508	292,650398431493	
60,000000000014	60,0877927051618	292,441338282406	
60,000000000013	60,5460015436195	291,808013749251	
60,000000000013	63,3957137587399	290,735014157014	
60,000000000013	81,1188386576237	289,197128344067	
60,000000000013	98,6607880101104	287,160052527296	
60,000000000013	115,874327802841	284,581389032267	
60,000000000013	132,62056362333	281,411939215234	
60,000000000013	148,772274876764	277,597289188179	
60,000000000013	164,216756512066	273,079678808912	
60,000000000013	178,858061315021	267,800132881237	
60,000000000013	192,618569445942	261,700819094605	
60,000000000013	205,439848315481	254,727580782299	
Далее приведена диаг	рамма распределения то	емпературы по кольцево	ому срезу
280		L .	
260		L .	
240	·	$ \frac{1}{1}$.	
220			
Ē 200 ╂	·	· - \ - -	
	·		
140			
120	·	<u>h</u> 1	

Результаты расчета температурного поля в области заделки:

Результаты расчета следа тензора напряжений $\sigma_{ii,}$ для углов изменения направления потока соответственно $\phi{=}30,\,45,75$

_ L

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

4. Слив 50 м³ со скоростью течения 3 м/сек что занимает 471 секунд. Параметры разбиения сетки:

число точек по длине первого цилиндрического участка трубопровода N1 =100, число точек по углу ϕ тороидального участка трубопровода N ϕ =100, число точек по длине второго цилиндрического участка трубопровода N2 =100, число точек по окружности N ψ =50.

61 2194933562089	60 0050593383524	121 022946554707
60.1959177239074	60.0314912392853	115.693817605407
60.0314751650993	60,1960134087678	110,164298365554
60,0050566431817	61,2200617529138	104,454278276029
60,0008123750999	67,5941268380158	98,5843028732201
60.0001305121367	73,9406982328971	92,5754996241931
60.0000209674299	80.2369204598666	86,4495014431078
60.0000033685229	86,4601222905392	80.2283681795791
60,0000005411701	92,5878993673643	73,9345063837475
60,000000869418	98,5981957382383	67,5905876650794
60,000000139677	104,469383978691	
60,000000022441	110,18034358637	
60,000000003606	115,710537344807	
60,00000000058	121,040085367479	
60,000000000094	126,149836548746	
60,000000000016	131,021437164993	
60,000000000004	135,637396387018	
60,0000000000002	139,981148483011	
60,0000000000001	144,037111510075	
60,0000000000001	147,790742310931	
60,0000000000001	151,228587650827	
60,0000000000001	154,338331347668	
60,0000000000001	157,108837265649	
60,0000000000001	159,530188059165	
60,0000000000001	161,593719569316	
60,0000000000001	163,292050789858	
60,0000000000001	164,619109333001	
60,0000000000001	165,570152338	
60,0000000000001	166,141782777098	
60,0000000000001	166,331961124246	
60,0000000000001	166,140012362153	
60,000000000002	165,566628312935	
60,000000000004	164,613865287004	
60,000000000016	163,28513705417	
60,000000000094	161,58520315033	
60,000000000581	159,52015254289	
60,000000003609	157,097382688365	
60,000000022457	154,325574026521	
60,000000139773	151,214659967282	
60,000000869997	147,775792439323	
60,0000005415189	144,021303083033	
60,0000033706188	139,964660185299	
60,0000209800083	135,620421469354	
60,0001305875207	131,004182869629	
60,0008128262104	126,132523439087	

Результаты расчета температурного поля в области заделки:

Далее приведена диаграмма распределения температуры по кольцевому срезу

Результаты расчета следа тензора напряжений о_{іі,} для углов изменения направления

потока соответственно ф=30,45,75

Напряженно-деформированное состояние трубопровода при сливе жидкостей при криогенной температуре.

Диаграмма напряжений.

выводы

Представленная методика позволяет проводить расчет температурных полей и полей напряжений возникающих при сливе криогенных составляющих. Перепад температур при этом достигает 240° С.

Труба представляет собой три звена цилиндрическое, торическое и цилиндрическое. По одной из сторон которой происходит слив жидкого азота N₂ в виде ручейка.

Максимальные напряжения сосредоточены в области заделки трубы, они при истечении 470 секунд напряжения не распространяются более чем на 2,5 – 3 диаметра трубы при этом они не превышают 4.97*10⁷ н/м².

Полученные результаты могут быть использованы, как в космической технике так и в строительных технологиях например при замораживании "плывуна". Получена оценка точности для накопления погрешности в алгоритме Г.Шульца.

ЛИТЕРАТУРА

- [1] Л.И.Седов. Механика сплошной среды. Наука. 1976г.
- [2] Г.В.Коренев. Тензорное исчисление.Издательство МФТИ 2000 ISBN 5-89155-047-4
 [3] Шишкин С. А. О ВЫЧИСЛЕНИИ ВОЗМУЩЕННОЙ ОБРАТНОЙ МАТРИЦЫ В ВИДЕ СХОДЯЩЕГОСЯ ПРОИЗВЕДЕНИЯ. //Ж. вычисл. матем. и матем. Фнз. 1993. Т. 33. № 4. С- 624—631.
- [4] Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. Москва: Наука. 1987г. с.599.
- [5] Shulz G. Iterative Berechnung der reziproken Matrix.//
 "Z. Angew. Math und Mech." 1933, 13, № 1, p. 57-59.
- [6] Stickel E. On a class of high order methods for inverting matrices.
 "Z. Angew. Math und Mech." 1987, 67, № 7.
- [7] В.Ф. Грибанов, Н.Г. Паничкин Связные и динамические задачи термоупругости. Москва "Машиностроение "1984 г. 181 с.
- [8] Nickell R. E. Sackman J.L. Approximate solution in linear coupled thermoelasticity Quart. Appl. Math. 1968, vol. 26 N 1. p. 11- 26.